\(\int (c x^2)^p (a+b x)^{-2-2 p} \, dx\) [990]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 30 \[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\frac {x \left (c x^2\right )^p (a+b x)^{-1-2 p}}{a (1+2 p)} \]

[Out]

x*(c*x^2)^p*(b*x+a)^(-1-2*p)/a/(1+2*p)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {15, 37} \[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\frac {x \left (c x^2\right )^p (a+b x)^{-2 p-1}}{a (2 p+1)} \]

[In]

Int[(c*x^2)^p*(a + b*x)^(-2 - 2*p),x]

[Out]

(x*(c*x^2)^p*(a + b*x)^(-1 - 2*p))/(a*(1 + 2*p))

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps \begin{align*} \text {integral}& = \left (x^{-2 p} \left (c x^2\right )^p\right ) \int x^{2 p} (a+b x)^{-2-2 p} \, dx \\ & = \frac {x \left (c x^2\right )^p (a+b x)^{-1-2 p}}{a (1+2 p)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.93 \[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\frac {x \left (c x^2\right )^p (a+b x)^{-1-2 p}}{a+2 a p} \]

[In]

Integrate[(c*x^2)^p*(a + b*x)^(-2 - 2*p),x]

[Out]

(x*(c*x^2)^p*(a + b*x)^(-1 - 2*p))/(a + 2*a*p)

Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.03

method result size
gosper \(\frac {x \left (c \,x^{2}\right )^{p} \left (b x +a \right )^{-1-2 p}}{a \left (1+2 p \right )}\) \(31\)
parallelrisch \(\frac {x^{2} \left (c \,x^{2}\right )^{p} \left (b x +a \right )^{-2-2 p} b +x \left (c \,x^{2}\right )^{p} \left (b x +a \right )^{-2-2 p} a}{a \left (1+2 p \right )}\) \(57\)

[In]

int((c*x^2)^p*(b*x+a)^(-2-2*p),x,method=_RETURNVERBOSE)

[Out]

x*(c*x^2)^p*(b*x+a)^(-1-2*p)/a/(1+2*p)

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.20 \[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\frac {{\left (b x^{2} + a x\right )} \left (c x^{2}\right )^{p} {\left (b x + a\right )}^{-2 \, p - 2}}{2 \, a p + a} \]

[In]

integrate((c*x^2)^p*(b*x+a)^(-2-2*p),x, algorithm="fricas")

[Out]

(b*x^2 + a*x)*(c*x^2)^p*(b*x + a)^(-2*p - 2)/(2*a*p + a)

Sympy [F]

\[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\int \left (c x^{2}\right )^{p} \left (a + b x\right )^{- 2 p - 2}\, dx \]

[In]

integrate((c*x**2)**p*(b*x+a)**(-2-2*p),x)

[Out]

Integral((c*x**2)**p*(a + b*x)**(-2*p - 2), x)

Maxima [F]

\[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\int { \left (c x^{2}\right )^{p} {\left (b x + a\right )}^{-2 \, p - 2} \,d x } \]

[In]

integrate((c*x^2)^p*(b*x+a)^(-2-2*p),x, algorithm="maxima")

[Out]

integrate((c*x^2)^p*(b*x + a)^(-2*p - 2), x)

Giac [F]

\[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\int { \left (c x^{2}\right )^{p} {\left (b x + a\right )}^{-2 \, p - 2} \,d x } \]

[In]

integrate((c*x^2)^p*(b*x+a)^(-2-2*p),x, algorithm="giac")

[Out]

integrate((c*x^2)^p*(b*x + a)^(-2*p - 2), x)

Mupad [B] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.07 \[ \int \left (c x^2\right )^p (a+b x)^{-2-2 p} \, dx=\frac {x\,{\left (c\,x^2\right )}^p}{a\,\left (2\,p+1\right )\,{\left (a+b\,x\right )}^{2\,p+1}} \]

[In]

int((c*x^2)^p/(a + b*x)^(2*p + 2),x)

[Out]

(x*(c*x^2)^p)/(a*(2*p + 1)*(a + b*x)^(2*p + 1))